

Colle du 13/03 - Sujet 1 Espaces vectoriels et séries

Question de cours. Enoncer et démontrer la caractérisation de deux espaces vectoriels en somme directe par l'intersection.

Exercice 1. Soit $E = \mathscr{C}([0;1];\mathbb{R})$. On définit

$$F = \left\{ f \in E \mid \int_0^1 f(t) e^t dt = 0 \right\} \qquad G = \left\{ g \in E \mid \exists C \in \mathbb{R}, \ \forall t \in [0; 1], \ g(t) = C \right\}.$$

- 1. Montrer que F et G sont deux sous-espaces vectoriels de E.
- 2. Montrer que F et G sont supplémentaires dans E et préciser la décomposition d'un élément $h \in E$.

Exercice 2. Déterminer la nature de $\sum_{n \in \mathbb{N}^*} \frac{\ln ((n+1)(n+2))}{n(n+3)}$.

Colle de mathématiques PTSI

2023-2024

Colle du 13/03 - Sujet 2 Espaces vectoriels et séries

Question de cours. Démontrer le théorème d'encadrement série-intégrale.

Exercice 1. Déterminer la nature de la série de terme général $u_n = \left(1 + \frac{1}{\sqrt{n}}\right)^{-n}$.

Exercice 2. Soit $p \in \mathbb{N}^*$. Montrer que la famille $((n^k)_{n \in \mathbb{N}})_{k \in [1:p]}$ est libre dans $\mathbb{R}^{\mathbb{N}}$.

Colle de mathématiques PTSI

2023-2024

Colle du 13/03 - Sujet 3 Espaces vectoriels et séries

Question de cours. Montrer que la somme de sous-espaces vectoriels est un espace vectoriel.

Exercice 1. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$. Montrer que si $\sum_{n\in\mathbb{N}}u_n$ converge absolument alors $\sum_{n\in\mathbb{N}}u_n^2$ converge.

Exercice 2. Soient $E = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_{n \in \mathbb{N}} \text{ converge } \}$ et $F = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_{n \in \mathbb{N}} \text{ converge vers } 0\}$. Montrer que F est un sous-espace vectoriel de E et en déterminer un supplémentaire.